Le contrôle de petits moteurs n'est pas seulement en vitesse mais aussi en accélération, freinage position, renversement de marche...

La commande de moteurs, de petite ou de forte puissance, qu'elle soit réalisée à partir de cartes ou de modules utilise les mêmes techniques de contrôle. Ces techniques s'adaptent à la plupart des moteurs et permettent leur contrôle, non seulement de la vitesse mais des accélérations, du démarrage, de l'arrêt, du positionnement, du reversement de marche, etc. La plupart du temps ce sont les techniques scalaire et vectorielle qui sont mises en œuvre, avec les diverses possibilités de boucle fermée ou de boucle ouverte. Cette dernière est cependant de moins en moins utilisée, la précision sur la vitesse étant très mauvaise car elle dépend des variations de la charge et de la tension de la source. Il est facile, aujourd'hui, grâce à l'ensemble des moyens électroniques disponibles, de mettre en œuvre la boucle fermée sans coût important dans tous les cas de contrôle de moteur.

Le moteur le plus utilisé dans l'industrie est de type asynchrone à cage d'écureuil. Il est robuste, fiable, normalisé, économique, disponible, peu encombrant et simple... Lorsque les enroulements statoriques sont alimentés, ils produisent un champ tournant. Les lignes de flux qui traversent le rotor se déplacent par rapport aux barres conductrices de la cage. Il se crée alors un courant induit dans les barres mises en court-circuit à leurs extrémités. L'action du champ magnétique sur ce courant génère les forces déterminées par les lois de Laplace. Un couple moteur entraîne le rotor qui s'oppose au couple de la charge, ce qui produit un glissement. Pour le commander il suffit d'utiliser la modulation de largeur d'impulsions qui fait maintenant l'unanimité. Cette modulation est mise en œuvre par l'onduleur de tension, associé non contrôlé et un filtre capacitif. L'apparition sur le marché des semiconducteurs: thyristors, transistors bipolaires, GTO, IGBT, transistors Mosfet, des circuits électroniques spécialisés pour la commande de ces composants de puissance, des circuits intégrés (microcontrôleurs, DSP et ASIC), ont rendu l'alimentation et la commande des moteurs plus performantes. Selon les fonctions nécessaires à l'application, il y a le choix entre deux techniques : le contrôle U/f avec ou sans capteur et le contrôle vectoriel de flux. La première technique est une commande scalaire, elle permet d'évaluer la charge et celle de la résistance statorique. Seul le module de la variable à réguler est prise en compte (la tension), la phase du vecteur qui la représente n'est pas considérée. La commande, souvent utilisée, est celle à flux constant pour que le moteur développe le couple maximum, à toutes les vitesses. Pour maintenir ce flux constant, il faut que le rapport entre la tension et la fréquence reste fixe. Afin que le couple demeure stable, quelles que soient les conditions de charge et de vitesse, on peut utiliser un générateur de fonctions qui détermine la valeur des tensions que doit générer l'onduleur à partir de la vitesse du flux statorique. Quoiqu'il en soit, cette commande ne permet pas d'obtenir de bonnes performances dynamiques car il reste difficile de prendre en compte la résistance statorique, ce qui peut conduire à des erreurs importantes aux très basses vitesses.

Le variateur de vitesse de type scalaire ne peut s'utiliser que lorsque les performances dynamiques sont peu contraignantes.

Pour des performances élevées : la commande vectorielle de flux

Certaines applications nécessitent des performances élevées au démarrage, au freinage, au reversement du sens de marche, à la variation rapide de vitesse, en régime transitoire. Pour cela il faut faire appel à la commande vectorielle de flux qui comporte l'estimation de la charge du moteur, déterminée à partir de la mesure de l'intensité dans l'étage continu du variateur, et l'estimation de la résistance statorique, caractéristique physique du moteur, dépendant de la température. Il est alors possible de calculer la tension à appliquer au moteur, à une vitesse donnée, pour obtenir le flux optimal. Cette commande permet aussi une suralimentation transitoire, qui augmente la tension lors d'accélérations rapides, et une compensation du glissement afin de maintenir la vitesse de rotation sensiblement constante, dans ce cas le moteur est alimenté à une fréquence légèrement plus importante qui est fonction de l'estimation de la charge et de la fréquence correspondant à celle du glissement nominal du moteur.

Cette commande vectorielle, hormis l'amélioration de la qualité de l'entraînement, permet aussi d'obtenir d'autres fonctions annexes de manière plus performantes. La fonction reprise à la volée, par exemple, permet de reprendre le contrôle d'un moteur en pleine rotation. L'alimentation du moteur étant coupée, sa vitesse diminue, pour reprendre le contrôle, sans surintensité, il faut connaître la vitesse et la position du flux pour pouvoir le synchroniser. Grâce à la structure de cette commande, il est ainsi possible d'estimer la vitesse et le flux alors que le moteur n'est plus alimenté. L'estimation de la vitesse peut être effectuée même s'il ne reste qu'un faible flux rémanent dans la machine.

Quelles cartes et modules d'entraînement, avec quels moteurs ?

Les cartes et modules gèrent non seulement des moteurs asynchrones mais également des moteurs à courant continu et des moteurs pas à pas. Pour ces derniers, qui se caractérisent par une commande par impulsions, cartes et modules génèrent automatiquement les rampes d'accélération et de décélération. Ils fonctionnent souvent en boucle ouverte, c'est-à-dire qu'ils n'effectuent pas le contrôle du nombre de pas demandés et ne peuvent pas savoir si un obstacle a pu bloquer le moteur. Les ensembles cartes moteurs, ou modules moteurs, apportent une solution simple et économique à des applications de robotique simple. Leur rendement est généralement assez médiocre, et leurs performances sont réduites par rapport à leur poids et à leur consommation en courant. Ils restent cependant très utilisés en raison d'un couple relativement élevé à bas régime, de leur faible coût et de leur simplicité.

Lorsqu'il est nécessaire, le moteur à courant continu et sa commande conduisent généralement à un très bon rendement sous un faible encombrement, avec des vitesses et des accélérations importantes. Il peuve fonctionner en boucle fermée s'il est équipé d'un codeur incrémental. Les modules et cartes de contrôle de ce type de moteur permettent une très grande précision et d'excellentes performances. Ils sont particulièrement adaptés aux applications de robotique

légère. On obtient fréquemment des précisions de positionnement jusqu'à 1/1000 ème de tour. L'électronique peut limiter le couple du moteur et être informée sur le mouvement en cours et, en particulier, savoir si le moteur ne peut pas arriver à la position voulue par suite d'un effort trop important ou d'un obstacle rencontré durant le parcours.

La position du rotor du moteur peut être déterminée à tout moment, même si on l'a fait tourner manuellement. Des repérages de position par apprentissage peuvent être ainsi réalisés.

Les moteurs à courant continu, ainsi asservis, apportent des performances et une souplesse d'utilisation bien supérieures à celles des moteurs pas à pas.

Le choix de la carte ou du module de contrôle peut être vu également côté interface de communication que les fabricants de cartes et de modules proposent avec leurs produits : les réseaux Profibus DP, Interbus S, Devicenet, CanOpen et Ethernet. Pour des applications plus simples, les cartes à bus série du type RS232 ou RS 432, et I2C peuvent être suffisantes.

Jean-Pierre Feste

Distributeurs Fabricants, Site Internet	Référence produit	Tension entrée Courant sortie, Type de moteur	Entrées / sorties Interface réseaux	Mode de contrôle, logiciel	Limitation en courant. Indice de protection	Applications principales	Commentaires
B&R www.br- automation.com	ACOPOS	3x 400 VAC à 480 VAC, 450 W – 64 kW, moteurs synchrones, asynchrones, servomoteurs, linéaires, couples	Entrées: 2x trigger, 2x fin de course, 1x référence, 1x arrêt EN954 cat.3 Sorties: 1x 24V, 1x frein moteur EN954 cat.3 Autres connexions: 4 slots pour cartes automate, POWERLINK & CAN (communication), codeur, E/S digitales & analogiques	Mode de contrôle: boucle fermée (régulation PI numérique avec processeur DSP, boucle de courant 50 µs, boucle de position 400 µs) ou boucle ouverte (commande U/f) Programmation: langages IEC61131-3 et ANSI C, blocs de fonction PLCopen, Soft-CNC	IP20	Contrôle de mouvement et de position, variation de vitesse, synchronisation multi-axes, cames électroniques, séquenceur à cames, commande CNC	Résistance de freinage et filtre CEM intégrés Sécurité EN954-1 cat.3
B&R www.br- automation.com	ACOPOS multi	3x 220 VAC à 3x 480 VAC, 1 kW – 120 kW, moteurs synchrones, asynchrones, servomoteurs, linéaires, couples	Entrées (par module): 2x trigger, 2x arrêt EN954 cat.4 Sorties (par module): 2x 24V, 1x frein moteur Communication (pa r module): 2x POWERLINK Autres connexions (par module): 2 slots pour cartes codeur et E/S digitales & analogiques	Mode de contrôle : boucle fermée (régulation PI numérique avec processeur DSP, boucle de courant 50 µs, boucle de position 400 µs) ou boucle ouverte (commande U/f) Programmation : langages IEC61131-3 et ANSI C, blocs de fonction PLCopen, Soft-CNC	IP20	Contrôle de mouvement et de position, variation de vitesse, synchronisation multi-axes, cames électroniques, séquenceur à cames, commande CNC	Système modulaire conçu pour les machines multi-axes Economies d'énergie par correction du facteur de puissance et réinjection réseau Refroidissement par radiateur externe ou circuit liquide en option Deux axes par module variateur Sécurité EN954-1 cat.4 et SIL3

Distributeurs Fabricants, Site Internet	Référence produit	Tension entrée Courant sortie, Type de moteur	Entrées / sorties Interface réseaux	Mode de contrôle, logiciel	Limitation en courant. Indice de protection	Applications principales	Commentaires
B&R www.br- automation.com	ACOPOSi nverter	100 – 240 VAC en mono, 3x200 – 3x500 VAC en tri, 0,18 – 500 kW, 1,5 – 941 A moteurs asynchrones, synchrones.	2x POWERLINK , 1x RS485 1X 24V	Mode de contrôle : contrôle vectoriel de flux (avec ou sans retour codeur) ou commande U/f.	IP20	Variation de vitesse.	
B&R www.br- automation.com	ACOPOS micro	80 VDC, 110 / 230 VAC, 50 W – 1 kW, 1 A – 15 A, moteurs pas à pas, servomoteurs	Communication: 2x POWERLINK ou 2x X2X Autres connexions E/S digitales & analogiques, 1 ou 2 codeur en option	Mode de contrôle: boucle fermée (régulation PI numérique avec processeur DSP, boucle de courant 50 μs, boucle de position 400 μs) ou commande pas à pas. Programmation: langages IEC61131-3 et ANSI C, blocs de fonction PLCopen, Soft-CNC	IP20	Commande de moteurs pas à pas et de servomoteurs	Composant très compact : 63x150x140 mm. Version avec deux moteurs par module Couple de maintien jusqu'à 20 Nm
BECKHOFF www.beckhoff.com	KL25x1	Commande de moteur pas à pas jusqu'à 50V, 5A	2 entrées rapides 10µs, une entrée codeur. Ouvert sur tous les réseaux de terrain	Commande en vitesse ou position.	IP20	Technique d'entrainement low cost.	Permet de commander 1 moteur pas à pas au niveau des E/S déportées.
BECKHOFF www.beckhoff.com	KL25x2	Commande de moteur à courant continu jusqu'à 50V, 5A	2 entrées rapides 10µs, une entrée codeur. Ouvert sur tous les réseaux de terrain	Commande en vitesse	IP20	Technique d'entraînement faible coût	Permet de commander 2 moteurs à courant continu au niveau des E/S déportées.
BOSCH REXROTH www.boschrexroth.fr	IndraDrive	200 à 500 V 12 à 350 A Moteurs synchrone, asynchrone, à aimant permanent, brushless, linéaire	8 entrées numériques / 2 sorties analogiques et 3 sorties relais RS 232, Ethernet IP, SERCOS II, SERCOS III, Profibus, DeviceNet, CanOpen, Profinet	Synchrone: boucle ouverte / fermée Asynchrone: contrôle vectoriel de flux / U/f IndraMotion MLD	12 à 350 A IP 20	Automation emballage et agroalimentaires imprimerie et de Manutention Convoyage et stockage Transformation du plastique Machines-outils	Variateurs modulaires Fonctions de sécurité embarquées selon la norme EN 954-1 Avec ou sans réinjection réseau

Distributeurs Fabricants, Site Internet	Référence produit	Tension entrée Courant sortie, Type de moteur	Entrées / sorties Interface réseaux	Mode de contrôle, logiciel	Limitation en courant. Indice de protection	Applications principales	Commentaires
CROUZET www.crouzet.com	BDE40	1 à 36 Vcc 14 A max	0 à 10 V PWM Entrée marce/Arrêt, sens de rotation, vitesse, limite de couple, maintien, freinage et effet Hall	Contrôle de vitesse 4 quadrants en boucle fermée		Utilisation seul ou avec automate	Pour moteurs sans balais
DYNAMIC MOTION SA (www.dynamicmotion.c h)	Tinaxis Plus BL150	12 à 48V 3A (6A pointe) Moteur sans balais	10 I/O 24V RS485 RS232	Programmable en BASIC	limite courant: oui IP: non	régulation de process industriel, machines divers	Moteur et commande intégrés dans 1 seule unité Applications autonome ou piloté à distance
DYNAMIC MOTION SA (www.dynamicmotion.c h)	Tinaxis Plus STP60	12 à 45V, 1.2A Moteur pas-à-pas	8 I/O 24V	Programmable en BASIC	limite courant: oui IP: non (carte seule)	Positionnement précis, machines de laboratoire, etc.	Electronique programmable très compacte, pour des applications autonomes
FiveCo www.fiveco.ch	FMod- IPECMOT 48/10	15-48 VDC, 10A, DC avec ou sans balais	2 Entrées Ethernet	Postion, Vitesse avec suivi de trajectoire	Réglable (0.1 à 15A)	Table XYZ de précision, robot mobile, petite machine d'assemblage, bras robotisé	Ethernet standard Régulateur en position/vitesse sans encodeur (avec les sondes de Hall)
FiveCo www.fiveco.ch	FMod- IPDCMO T 48/1.5	10-48 VDC, 1.5A, DC avec balais	2 Entrées Ethernet	Postion, Vitesse avec suivi de trajectoire	Réglable (0.1 à 3A)	Table XYZ de précision, robot mobile, petite machine d'assemblage, bras robotisé	Compatible Power over Ethernet (PoE 802.3af)
IMO JEAMBRUN D: DELTA TAU www.imojeambrun.fr	Geobrick	220 VAC 8 A nominal par axes Brushless	2, 4 ou 8 axes 32 ^E /16S ext. USB Ethernet Modbus	Contrôleur multitâche intégrée	TP20 Toutes protections	Machines spéciales,	Très économique et performance maximum Un seul boitier intègre puissance et intelligence
IMO JEAMBRUN D: BALDOR www.imojeambrun.fr	MOTIFLE X, MICROF LEX	220 – 400 VAC 1.5 à 27 A nominal Brushless	8 ^E /3S ext. USB Ethernet Powerlink Canopen Devicenet Profibus Modbus	Contrôleur multitâche intégrée	IP20 Toutes protections	Machines spéciales,	Une gamme complète de variateur sur réseau Ethernet mais aussi fonctionnent en autonome et programmable

Distributeurs Fabricants, Site Internet	Référence produit	Tension entrée Courant sortie, Type de moteur	Entrées / sorties Interface réseaux	Mode de contrôle, logiciel	Limitation en courant. Indice de protection	Applications principales	Commentaires
LEROY- SOMER www.leroy-somer.com	DIGITAX ST Versions : Base, Indexer, Plus	Mono: 230V Tri: 230-400V 48/62Hz 1.1 à 8A 1.2 Servomoteur synchrone	Profibus DP Interbus S Devicenet Can Open Ethernet TCP/IP SERCOS EtherCat 2 sorties analogiques (16bit +signe) 3 entrées logiques 1 entrée Freeze (1µs) 1 entrée codeur universelle 1 émulation codeur	Contrôle servomoteurs à aimants. Gestion de tous types de capteurs de vitesse (incrémental, Sin Cos, SSI, résolveurs)	Entrée sécuritaire EN954- 1 Cat3 IP 20 refroidissement par air	Intégration de modules Applications pour développement IEC 61131-3 - PLC Open, CT Soft Indexer Applications standard : Positionnement, CAME, synchronisation, maître virtuel,)	Machine transfert à haute dynamique, conditionnement, machine d'imprimerie, machines spéciales, machines outils
LEROY- SOMER www.leroy-somer.com	UNIDRIV E SP	0,75Kw à 1.5Mw Asynchrone, servomoteur synchrone et HPM	Profibus DP Interbus S Devicenet Can Open Ethernet TCP/IP SERCOS EtherCat	U/F, Vectoriel de flux boucle ouverte et fermée. Contrôle servomoteurs à aimants. Gestion de tous types de capteurs de vitesse (incrémental, Sin Cos, SSI, résolveurs, effet Hall)	Entrée sécuritaire EN954- 1 Cat3 IP 20 refroidissement par air	Intégration de modules Applications : Language IEC 6- 1131, PLC Open, SyptPro Solutions standard : Positionnement, CAME, synchronisation, enroulage / déroulage, levage, ascenseur,)	Manutention à haute dynamique, emballage, portiques, machine d'imprimerie, machines spéciales, machines outils
MDP MDPelectronics www.mdp.fr	MOTION 60/10	60VDC 10A Courant continu, brushless avec et sans capteur Pas à pas	6 entrées TOR 6 sorties TOR 1 entrée analogique 1 sortie analogique CANopen DSP402 RS232	Asservissement couple Asservissement vitesse, Asservissement position	10A permanent 15A crête IP00	Manutention Emballage et conditionnement Semiconducteur	Logiciel applicatif adaptable à l'application client Universelle
MDP MDPelectronics www.mdp.fr	NANO 30/3	30VDC 3A DC, BLDC et Pas à pas	5 entrées TOR 1 entrée analogique 1 sortie TOR Interface série	Régulation vitesse	3A permanent	Imprimerie Marquage Composants d'automatismes Climatisation, vanne	Paramétrable Petite dimension Economique

Distributeurs Fabricants, Site Internet	Référence produit	Tension entrée Courant sortie, Type de moteur	Entrées / sorties Interface réseaux	Mode de contrôle, logiciel	Limitation en courant. Indice de protection	Applications principales	Commentaires
SEW-USOCOME www.usocome.com	MOVIMO T	200 / 240 V tri 380/500 V tri 0.37 à 3.0 kW AC	En standard: 3 entrées binaires 1 sortie relais Profibus Interbus Interbus FO fibre optique AS-interface DeviceNet CANopen	VFC et U/f 0 à 100 Hz Variateurs décentralisés	IP54 à IP66 surintensité, court-circuit, surtension, rupture phase, surtempérature, charge variateur	IP54 à IP66	
SEW-USOCOME www.usocome.com	MOVITR AC B	0.25 à 2.2 A 0,25 à 45 A 230 V 400/500 V tri 230 V tri AC	En standard : 1 entrée analogique 6 entrées binaires 2 sorties binaires 1 sortie relais	Convertisseur de fréquence 0 à 150Hz en mode VFC 0 à 600Hz en mode U/f	IP20 surintensité, court-circuit, surtension, rupture phase,		Fonction économie d'énergie Régulateur P.I. Assistant de mise en service
SIDENA www.sidena.com	XA-629	8 à 48 VCC 3A Moteur CC	2 entrées	I2C, USB, serie, réseau		Robotique légère, bancs de test, intégrateurs	Carte d'asservissement numérique en position et en vitesse
SIDENA www.sidena.com	XA- M3SM	8 à 28 VCC 1,5 A par phase 3 moteur pas à pas	3 entrées	I2C, USB, serie, réseau		Robotique légère, bancs de test, intégrateurs	Commande micropas pour 3 moteurs pas à pas